Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.567
Filtrar
1.
J Genet Genomics ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38575110

RESUMO

The highly conserved CLV-WUS negative feedback pathway plays a decisive role in regulating stem cell maintenance in shoot and floral meristems in higher plants, including Arabidopsis, rice, maize, and tomato. Here, we report the discovery that CLV-like genes directly regulate grain shape in rice. We find significant natural variations in the OsCLV2c, OsCLV2d, and OsCRN1 loci in a genome-wide association study of grain shape in rice. OsCLV2a, OsCLV2c, OsCLV2d, and OsCRN1 negatively regulate grain shape and show distinctive geographical distribution, indica-japonica differentiation, and artificial selection signatures. Notably, OsCLV2a and OsCRN1 interact biochemically and genetically, suggesting that the two components function in a complex to regulate grain shape in rice. Furthermore, the genetic contributions of the haplotypes combining OsCLV2a, OsCLV2c, and OsCRN1 are significantly higher than that of each single gene alone in controlling key yield traits. These findings identify two groups of receptor-like kinases that may function as distinct co-receptors to control grain size in rice, thereby revealing a previously unrecognized role of the CLV class genes in regulating seed development and proposing a framework to understand the molecular mechanisms of the CLV-WUS pathway in rice and other crops.

2.
Dalton Trans ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38595157

RESUMO

A series of two-dimensional (2D) spin-crossover coordination polymers (SCO-CPs) [FeII(TPE)(NCX)2]·solv (1: X = BH3, solv = H2O·2CH3OH·DMF; 2: X = Se, solv = H2O·2CH3OH·0.5DMF; 3: X = S, solv = H2O·2CH3OH·0.5DMF) were synthesized by employing 1,1,2,2-tetra(pyridin-4-yl)ethene (TPE) and pseudohalide (NCX-) coligands. Magnetic measurements indicated that complexes 1-3 exhibited SCO behaviors with diminishing thermal hysteresis (7/4/0 K) upon decreasing the ligand-field strength. The critical temperatures (Tc) during spin transition were found to be inversely proportional to the coordination ability parameters (a™) with a linear correlation. The guest effect was also investigated in the solvent-exchanged phases 1-SE/2-SE/3-SE wherein the DMF molecules were replaced by methanol molecules. Compared with 1-3, 1-SE/2-SE/3-SE displayed more abrupt and complete single-step SCO behaviors but narrower thermal hysteretic loops. The results reported here demonstrate that the Tc values of these two families were dominated by the ligand-field strength of the NCX- anions (NCBH3 > NCSe > NCS), whereas the guest effect only modulated the kinetic factor of the SCO nature in this system.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38624095

RESUMO

The realization of ferromagnetic insulating ground state is a critical prerequisite for spintronic applications. By applying electric field-controlled ionic liquid gating (ILG) to stoichiometry La0.67Sr0.33CoO3 thin films, the doping of protons (H+) has been achieved for the first time. Furthermore, a hitherto-unreported ferromagnetic insulating phase with a remarkably high Tc up to 180 K has been observed which can be attributed to the doping of H+ and the formation of oxygen vacancies (VO). The chemical formula of the dual-ion migrated film has been identified as La2/3Sr1/3CoO8/3H2/3 based on combined Co L23-edge absorption spectra and configuration interaction cluster calculations, from which we are able to explain the ferromagnetic ground state in terms of the distinct magnetic moment contributions from Co ions with octahedral (Oh) and tetrahedral (Td) symmetries following antiparallel spin alignments. Further density functional theory calculations have been performed to verify the functionality of H+ as the transfer ion and the origin of the novel ferromagnetic insulating ground state. Our results provide a fundamental understanding of the ILG regulation mechanism and shed light on the manipulating of more functionalities in other correlated compounds through dual-ion manipulation.

4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621914

RESUMO

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , MicroRNAs , Paeonia , Extratos Vegetais , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2 , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Apoptose , Proliferação de Células , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro , Luciferases/metabolismo , Luciferases/farmacologia , Linhagem Celular Tumoral
5.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1579-1586, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621942

RESUMO

This study aims to investigate the effects of Gualou Xiebai Banxia Decoction(GXBD) on type 2 diabetes mellitus(T2DM) combined with acute myocardial infarction(AMI) in rats via chemerin/chemokine-like receptor 1(CMKLR1)/peroxisome proliferator-activated receptor α(PPARα) signaling pathway, and to explore the mechanism of GXBD in alleviating glucose and lipid metabolism disorders. The SD rats were randomized into control, model, positive control, and low-and high-dose GXBD groups. The rat model of T2DM was established by administration with high-fat emulsion(HFE) by gavage and intraperitoneal injection with streptozotocin, and then coronary artery ligation was performed to induce AMI. The control and model groups were administrated with the equal volume of normal saline, and other groups were administrated with corresponding drugs by gavage. Changes in relevant metabolic indicators were assessed by ELISA and biochemical assays, and the protein levels of chemerin, CMKLR1, and PPARα in the liver, abdominal fat, and heart were determined by Western blot. The results showed that GXBD alleviated the myocardial damage and reduced the levels of blood lipids, myocardial enzymes, and inflammatory cytokines, while it did not lead to significant changes in blood glucose. Compared with the model group, GXBD down-regulated the expression of chemerin in peripheral blood and up-regulated the expression of cyclic adenosine monophosphate(cAMP) and protein kinase A(PKA) in the liver. After treatment with GXBD, the protein levels of chemerin and CMKLR1 in the liver, abdominal fat, and heart were down-regulated, while the protein levels of PPARα in the liver and abdominal fat were up-regulated. In conclusion, GXBD significantly ameliorated the disorders of glycolipid metabolism in the T2DM-AMI model by regulating the chemerin/CMKLR1/PPARα signaling pathway to exert a protective effect on the damaged myocardium. This study provides a theoretical basis for further clinical study of GXBD against T2DM-AMI and is a manifestation of TCM treatment of phlegm and turbidity causing obstruction at the protein level.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Ratos , Animais , PPAR alfa/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos Sprague-Dawley , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Quimiocinas
6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1690-1698, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621953

RESUMO

Styrax is a commonly used imported traditional Chinese medicinal material in China. It was introduced to China in the Han Dynasty and was first described as a traditional Chinese medicine in Miscellaneous Records of Famous Physicians(Ming Yi Bie Lu). In this paper, by combing ancient and modern Chinese and foreign herbal medicine books and modern literature, combined with the results of field investigations on the origin of Styrax, the changes of Styrax involving the name, quality evaluation, origin, place of origin, and harvesting and processing were systematically verified. The results show that since ancient times, the origin and place of origin of Styrax have been unclear. The medical scientists of all dynasties in China have evaluated the quality of Styrax from four aspects: texture, viscosity, odor concentration, and color. The varieties of Styrax changed twice. The first change may have occurred during the Sui and Tang Dynasties, and the base changed from Styrax officinalis to Liquidambar orientalis. The second change was in modern times, and the base changed from L. orientalis to L. styraciflua. At the same time, the place of origin changed for the first time, from Turkey, Syria, and other countries in southern Asia Minor to Honduras, Guatemala, and other countries in Central America and southern North America. This paper studied the historical evolution of Styrax in terms of quality evaluation, origin, place of origin, character, and harvesting and processing. At the same time, it summarized the application of Styrax in the western countries, which can provide a historical basis for the further development and utilization of Styrax.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Styrax , Medicina Tradicional Chinesa , Medicina Herbária , China
7.
Nat Aging ; 4(4): 527-545, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594460

RESUMO

Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.


Assuntos
Oócitos , Ovário , Feminino , Humanos , Animais , Camundongos , Ovário/metabolismo , Oócitos/metabolismo , Fatores de Transcrição/metabolismo , Células da Granulosa/metabolismo , Perfilação da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/genética
8.
Int J Med Sci ; 21(5): 874-881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617008

RESUMO

Background: Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease associated with systemic symptoms. Periodontitis, a prevalent dental disease, shares immune-mediated inflammatory characteristics with HS. This cohort study aims to evaluate the association between HS and periodontitis. Methods: Using the TriNetX research network, a global-federated database of electronic health records, we conducted a retrospective cohort study. People being diagnosed of HS were identified and propensity score matching was performed to identify proper control group, via balancing critical covariates Within the follow-up time of 1 year, 3 year and 5 years, hazard ratios were calculated to assess the risk of periodontitis in HS patients compared to controls. Results: Within the 53,968 HS patients and the same number of matched controls, the HS patients exhibited a significantly increased risk of developing periodontitis compared to controls after 3 years of follow-up (HR: 1.64, 95% CI: 1.11, 2.44) and 5 years of follow-up (HR: 1.64, 95% CI: 1.21, 2.24) of follow-up. Sensitivity analyses supported these findings under various matching models and washout periods. While comparing with patients with psoriasis, the association between HS and periodontitis remained significant (HR: 1.73, 95% CI: 1.23, 2.44). Conclusion: The observed increased risk suggests the need for heightened awareness and potential interdisciplinary care for individuals with HS to address periodontal health.


Assuntos
Hidradenite Supurativa , Periodontite , Humanos , Hidradenite Supurativa/complicações , Hidradenite Supurativa/epidemiologia , Estudos de Coortes , Pontuação de Propensão , Estudos Retrospectivos , Periodontite/complicações , Periodontite/epidemiologia , Fatores de Risco
10.
Ageing Res Rev ; : 102311, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636559

RESUMO

Ovarian aging is marked by a reduction in the quantity and quality of ovarian follicles, leading to a decline in female fertility and ovarian endocrine function. While the biological characteristics of ovarian aging are well-established, the exact mechanisms underlying this process remain elusive. Recent studies underscore the vital role of trace elements (TEs) in maintaining ovarian function. Imbalances in TEs can lead to ovarian aging, characterized by reduced enzyme activity, hormonal imbalances, ovulatory disorders, and decreased fertility. A comprehensive understanding of the relationship between systemic and cellular TEs balance and ovarian aging is critical for developing treatments to delay aging and manage age-related conditions. This review consolidates current insights into TEs homeostasis and its impact on ovarian aging, assesses how altered TEs metabolism affects ovarian aging, and suggests future research directions to prolong ovarian reproductive life. These studies are expected to offer novel approaches for mitigating ovarian aging.

11.
Adv Mater ; : e2402001, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597787

RESUMO

Molecular semiconductor (MSC) is a promising candidate for spintronic applications benefiting from its long spin lifetime caused by light elemental-composition essence and thus weak spin-orbit coupling (SOC). According to current knowledge, the SOC effect, normally dominated by the elemental composition, is the main spin-relaxation causation in MSCs, and thus the molecular structure-induced SOC change is one of the most concerned issues. In theoretical study, molecular isomerism, a most prototype phenomenon, has long been considered to possess little difference on spin transport previously, since elemental compositions of isomers are totally the same. However, here in this study, quite different spin-transport performances are demonstrated in ITIC and its structural isomers BDTIC experimentally, for the first time, though the charge transport and molecular stacking of the two films are very similar. By further experiments of electron-paramagnetic resonance and density-functional-theory calculations, it is revealed that noncovalent-conformational locks (NCLs) formed in BDTIC can lead to enhancement of SOC and thus decrease the spin lifetime. Hence, this study suggests the influences from the structural-isomeric effect must be considered for developing highly efficient spin-transport MSCs, which also provides a reliable theoretical basis for solving the great challenge of quantificational measurement of NCLs in films in the future.

12.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638822

RESUMO

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Mastócitos/metabolismo , Doenças Neuroinflamatórias , Microglia/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
13.
Mater Today Bio ; 26: 101053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654934

RESUMO

The complex genomics, immunosuppressive tumor microenvironment (TME), and chemotherapeutic resistance of osteosarcoma (OS) have resulted in limited therapeutic effects in the clinic. Ferroptosis is involved in tumor progression and is regulated mainly by glutathione peroxidase 4 (GPX4). Small interfering RNA (siRNA)-based RNA interference (RNAi) can precisely target any gene. However, achieving effective siRNA delivery is highly challenging. Here, we fabricated a TME-responsive metal-organic framework (MOF)-based biomimetic nanosystem (mFeP@si) with siGPX4 delivery and sonodynamic therapy (SDT) to treat OS by targeting ferroptosis. Under ultrasound (US) irradiation, mFeP@si achieves lysosomal escape via singlet oxygen (1O2)-mediated lysosomal membrane disruption and then accelerates ROS generation and glutathione (GSH) depletion. Meanwhile, siGPX4 silences GPX4 expression by binding to GPX4 mRNA and leads to the accumulation of toxic phospholipid hydroperoxides (PL-OOH), further magnifying the ROS storm and triggering ferroptosis. Notably, synergistic therapy remarkably enhances antitumor effects, improves the immunosuppressive TME by inducing potent immunogenic cell death (ICD), and increases the sensitivity of chemotherapy-resistant OS cells to cisplatin. Overall, this novel nanosystem, which targets ferroptosis by integrating RNAi and SDT, exhibits strong antitumor effects both in vitro and in vivo, providing new insights for treating OS.

14.
Res Sq ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38659815

RESUMO

We report long-term outcomes up to 18 years of a clinical trial treating children with neuroblastoma with EBV-specific T lymphocytes and CD3-activated T cells - each expressing a first-generation chimeric antigen receptor targeting GD2 with barcoded transgenes to allow tracking of each population. Of 11 patients with active disease at infusion, three patients achieved a complete response that was sustained in 2, one for 8 years until lost to follow up and one for 18+ years. Of eight patients with a history of relapse or at high risk of recurrence, five are disease-free at their last follow-up between 10-14 years post-infusion. Intermittent low levels of transgene were detected during the follow up period with significantly greater persistence in those who were long-term survivors. In conclusion, patients with relapsed/refractory neuroblastoma achieved long-term disease control after receiving GD2 CAR-T cell therapy including one patient now in remission of relapsed disease for >18 years.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38650104

RESUMO

OBJECTIVE: IRF2BPL mutation has been associated with a rare neurodevelopmental disorder with abnormal movements, including dystonia. However, the role of IRF2BPL in dystonia remains elusive. We aimed to investigate IRF2BPL mutations in a Taiwanese dystonia cohort. METHODS: A total of 300 unrelated patients with molecularly unassigned isolated (n = 256) or combined dystonia (n = 44) were enrolled between January 2015 and July 2023. The IRF2BPL variants were analyzed based on whole exome sequencing. The in silico prediction of the identified potential pathogenic variant was performed to predict its pathogenicity. We also compared the clinical and genetic features to previous literature reports. RESULTS: We identified one adolescent patient carrying a de novo heterozygous pathogenic variant of IRF2BPL, c.379C>T (p.Gln127Ter), who presented with generalized dystonia, developmental regression, and epilepsy (0.33% of our dystonia cohort). This variant resides within the polyglutamine (poly Q) domain before the first PEST sequence block of the IRF2BPL protein, remarkably truncating the protein structure. Combined with other patients with IRF2BPL mutations in the literature (n = 60), patients with variants in the poly Q domain have a higher rate of nonsense mutations (p < 0.001) and epilepsy (p = 0.008) than patients with variants in other domains. Furthermore, as our index patient, carriers with substitutions before the first PEST sequence block have significantly older age of onset (p < 0.01) and higher non-epilepsy symptoms, including generalized dystonia (p = 0.003), and ataxia (p = 0.003). INTERPRETATION: IRF2BPL mutation is a rare cause of dystonia in our population. Mutations in different domains of IRF2BPL exhibit different phenotypes.

16.
J Thorac Dis ; 16(3): 1984-1995, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38617763

RESUMO

Background: The radiographic classification of pulmonary nodules into benign versus malignant categories is a pivotal component of early lung cancer diagnosis. The present study aimed to investigate clinical and computed tomography (CT) clinical-radiomics nomogram for preoperative differentiation of benign and malignant pulmonary nodules. Methods: This retrospective study included 342 patients with pulmonary nodules who underwent high-resolution CT (HRCT) examination. We assigned them to a training dataset (n=239) and a validation dataset (n=103). There are 1781 tumor characteristics quantified by extracted features from the lesion segmented from patients' CT images. The features with poor reproducibility and high redundancy were removed. Then a least absolute shrinkage and selection operator (LASSO) logistic regression model with 10-fold cross-validation was used to further select features and build radiomics signatures. The independent predictive factors were identified by multivariate logistic regression. A radiomics nomogram was developed to predict the malignant probability. The performance and clinical utility of the clinical-radiomics nomogram was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results: After dimension reduction by the LASSO algorithm and multivariate logistic regression, four radiomic features were selected, including original_shape_Sphericity, exponential_glcm_Maximum Probability, log_sigma_2_0_mm_3D_glcm_Maximum Probability, and ogarithm_firstorder_90Percentile. Multivariate logistic regression showed that carcinoembryonic antigen (CEA) [odds ratio (OR) 95% confidence interval (CI): 1.40 (1.09-1.88)], CT rad score [OR (95% CI): 2.74 (2.03-3.85)], and cytokeratin-19-fragment (CYFRA21-1) [OR (95% CI): 1.80 (1.14-2.94)] were independent influencing factors of malignant pulmonary nodule (all P<0.05). The clinical-radiomics nomogram combining CEA, CYFRA21-1 and radiomics features achieved an area of curve (AUC) of 0.85 and 0.76 in the training group and verification group for the prediction of malignant pulmonary nodules. The clinical-radiomics nomogram demonstrated excellent agreement and practicality, as evidenced by the calibration curve and DCA. Conclusions: The clinical-radiomics nomogram combined of CT-based radiomics signature, along with CYFRA21-1 and CEA, demonstrated strong predictive ability, calibration, and clinical usefulness in distinguishing between benign and malignant pulmonary nodules. The use of CT-based radiomics has the potential to assist clinicians in making informed decisions prior to biopsy or surgery while avoiding unnecessary treatment for non-cancerous lesions.

17.
RSC Adv ; 14(16): 11258-11265, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38590347

RESUMO

Synthetic polymer nanoparticles (NPs) with biomimetic properties are ideally suited for different biomedical applications such as drug delivery and direct therapy. However, bulk synthetic approaches can suffer from poor reproducibility and scalability when precise size control or multi-step procedures are required. Herein, we report an integrated microfluidic chip for the synthesis of polymer NPs. The chip could sequentially perform homopolymer synthesis and subsequent crosslinking into NPs without intermediate purification. This was made possible by fabrication of the chip with a fluorinated elastomer and incorporation of two microfluidic mixers. The first was a long channel with passive mixing features for the aqueous RAFT synthesis of stimuli-responsive polymers in ambient conditions. The polymers were then directly fed into a hydrodynamic flow focusing (HFF) junction that rapidly mixed them with a crosslinker solution to produce NPs. Compared to microfluidic systems made of PDMS or glass, our chip had better compatibility and facile fabrication. The polymers were synthesized with high monomer conversion and the NP size was found to be influenced by the flow rate ratio between the crosslinker solution and polymer solution. This allowed for the size to be predictably controlled by careful adjustment of the fluid flow rates. The size of the NPs and their stimuli-responses were studied using DLS and SEM imaging. This microfluidic chip design can potentially streamline and provide some automation for the bottom-up synthesis of polymer NPs while offering on-demand size control.

18.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526978

RESUMO

Turbulent bursting events have been classified into outward interactions (Q1), ejections (Q2), inward interactions (Q3), and sweeps (Q4) in various studies. Ejections (Q2) and sweeps (Q4) have been identified as significant contributors to time consumption, momentum flux, and sediment flux. Additionally, research has shown that the distribution of these events varies nonuniformly at different bed elevations. Despite extensive investigations into the nonuniform distribution of turbulent bursting events, their impact on sediment transport has been rarely explored. In this work, we developed a modified stochastic diffusion particle tracking model (SD-PTM) driven by skew Brownian motion (SBM) using the stochastic Lagrangian approach to scrutinize sediment particle movement in turbulent flows. The model incorporates turbulent characteristics derived from a direct numerical simulation dataset, allowing for a comprehensive analysis of sediment particle dynamics. Moreover, the proposed model accounts for the nonuniform spatial distribution of ejection and sweep events, as well as the particle movement direction during these events. Numerical simulations of the model were conducted to trace sediment particle trajectories in the streamwise and vertical directions. The analysis of sediment transport involved calculating the variance of particle trajectories to examine anomalous diffusion. The model's performance was evaluated by comparing it with flow velocity and sediment concentration profiles obtained from measurements in previous studies. In conclusion, our study suggests that the motion of sediment particles in turbulent flow can be thoroughly investigated under extreme flow conditions using the modified SD-PTM driven by SBM.

19.
iScience ; 27(4): 109497, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550983

RESUMO

The development of CRISPR-Cas9 technology introduces an efficient tool for precise engineering of fish genomes. With a short reproduction cycle, zebrafish infection mode can be referenced as antiviral breeding researches in aquaculture fish. Previously we identified a crucian carp-specific gene ftrca1 as an inhibitor of interferon response in vitro. Here, we demonstrate that genome editing of zebrafish ftr42, a homolog of ftrca1, generates a zebrafish mutant (ftr42lof/lof) with an improved resistance to SVCV infection. Zebrafish ftr42 acts as a virus-induced E3 ligase and downregulates IFN antiviral response by facilitating TBK1 protein degradation and also IRF7 mRNA decay. Genome editing results in loss of function of zebrafish ftr42, which enables zebrafish to have enhanced interferon response, thus improving zebrafish survival against virus infection. Our results suggest that fine-tuning fish IFN innate immunity through genome editing of negative regulators can genetically improve viral resistance in fish.

20.
J Cardiothorac Surg ; 19(1): 123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481322

RESUMO

BACKGROUND: Acute type A aortic intramural hematoma (ATAIMH) is a variant of acute type A aortic dissection (ATAAD), exhibiting an increased risk of hemopericardium and cardiac tamponade. It can be life-threatening without emergency treatment. However, comprehensive studies of the clinical features and surgical outcomes of preoperative hemopericardium in patients with ATAIMH remain scarce. This retrospective study aims to investigate the clinical features and early and late outcomes of patients who underwent aortic repair surgery for ATAIMH complicated with preoperative hemopericardium. METHODS: We investigated 132 consecutive patients who underwent emergency ATAIMH repair at this institution between February 2007 and August 2020. These patients were dichotomized into the hemopericardium (n = 58; 43.9%) and non-hemopericardium groups (n = 74; 56.1%). We compared the clinical demographics, surgical information, postoperative complications, 5-year cumulative survival rates, and freedom from reoperation rates. Furthermore, multivariable logistic regression analysis was utilized to identify independent risk factors for patients who underwent re-exploration for bleeding. RESULTS: In the hemopericardium group, 36.2% of patients presented with cardiac tamponade before surgery. Moreover, the hemopericardium group showed higher rates of preoperative shock and endotracheal intubation and was associated with an elevated incidence of intractable perioperative bleeding, necessitating delayed sternal closure for hemostasis. The hemopericardium group exhibited higher blood transfusion volumes and rates of re-exploration for bleeding following surgery. However, the 5-year survival (59.5% vs. 75.0%; P = 0.077) and freedom from reoperation rates (93.3% vs. 85.5%; P = 0.416) were comparable between both groups. Multivariable analysis revealed that hemopericardium, cardiopulmonary bypass time, and delayed sternal closure were the risk factors for bleeding re-exploration. CONCLUSIONS: The presence of hemopericardium in patients with ATAIMH is associated with an elevated incidence of cardiac tamponade and unstable preoperative hemodynamics, which could lead to perioperative bleeding tendencies and high complication rates. However, patients of ATAIMH complicated with hemopericardium undergoing aggressive surgical intervention exhibited long-term surgical outcomes comparable to those without hemopericardium.


Assuntos
Tamponamento Cardíaco , Derrame Pericárdico , Humanos , Estudos Retrospectivos , Derrame Pericárdico/cirurgia , Resultado do Tratamento , Tamponamento Cardíaco/etiologia , Tamponamento Cardíaco/cirurgia , Hematoma Intramural Aórtico , Hematoma/complicações , Hematoma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...